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Abstract

La presente tesi è volta a spiegare e concettualizzare il modello e l’analisi svolta da
Kuramoto, così come lo studio della stabilità del modello sotto varie circostanze.
La tesi inizia contestualizzando il background storico. Il modello di Kuramoto
viene poi introdotto e analizzato per distribuzioni di oscillatori discrete e continue.
Alcune importanti caratteristiche sono dimostrate e spiegate, come la divisione degli
oscillatori in due classi e l’esistenza di condizioni che permettano la sincronizzazione.
Infine sono discusse la stabilità del modello, le condizioni per ottenere il caos nel
caso finito e l’impossibilità di ottenere il caos nel modello continuo.
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Chapter 1

Introduction

Tutti coloro che abbiano mai partecipato ad un concerto, una conferenza o uno spet-
tacolo teatrale avranno espresso il loro apprezzamento, battendo le mani insieme
al resto del pubblico. Ascoltando attentamente, l’applauso, inizialmente casuale,
converge velocemente ad una sincronizzazione ordinata di battiti di mani[1]. Questo
esempio è uno dei molti sistemi in cui si osserva il fenomeno della sincronizzazione
spontanea per un insieme di oscillatori. La sincronizzazione è un processo che ac-
cade quando due o più oscillatori interagiscono tra loro. Infatti, essi inizieranno ad
oscillare con una frequenza approssimativamente identica, nonostante le frequenze
naturali fossero drasticamente differenti.
Altri esempi si trovano in fisica, dove l’effetto dell’accoppiamento è ben compreso
e si trova in fenomeni quali l’oscillazione di neutrini[2], gli oscillatori in giunzioni
Josephson[3] e molti altri. Anche in biologia la sincronizzazione è osservata, per
esempio nei network di cellule pacemaker[4]. Altri esempi ancora sono il suono delle
cicale[5], alcune specie di lucciole che luccicano ad un ritmo comune[6], e molti
altri. Anche quando l’accoppiamento di un sistema non è ben compreso o definito,
la sincronizzazione avviene comunque e il modello descritto in questa tesi funziona
adeguatamente. Una volta che il modello viene compreso, può essere applicato
attraverso la tecnica del model checking[7]. Colui che contribuì in maggior misura
allo studio della sincronizzazione fu Yoshiki Kuramoto, il cui modello è descritto in
questa tesi.
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Chapter 2

Preliminary

The first mention of synchronisation was done back in the 17th century by Christian
Huygens[8]. It was Wiener[9] who began the mathematical exploration in the field
of collective synchronisation. He sought to approach the problem using Fourier
Analysis but was unfortunately to no avail.
In 1967, Winfree[10] took another few at the problem. He examined the behaviour
of many coupled oscillators. In his model, he included a number of simplifications.
Firstly, the distribution of natural frequencies of the oscillators was assumed to be
thin. (i.e. the oscillators would be nearly identical). He also assumed the coupling
between the oscillators to be weak. Using these constraints, Winfree was able to
approximate the oscillators to be coupled to some ’mean-field’ oscillation of the
collective system. He came up with his general model for the limit-cycle oscillators1

θ̇i = ωi +
(

N∑
j=1

X(θj)
)
Z(θi); i = 1, ..., N. (2.1)

Equation (2.1) describes the frequency (or time derivative of the phase) θ̇i of the
ith oscillator. Which is given by its natural frequency ωi plus some additional term
that takes into account the coupling to each of the remaining oscillators. This
additional term includes a function that gives the coupling strength X(θj) of the
jth oscillator to the collective system, as well as the coupling sensitivity Z(θi) of the
ith oscillator. Note that for the model to make sense, X(θj) and Z(θi) are required
to be 2π-periodic functions on C2[11].

1The limit-cycle oscillator is an attractor that describes the limiting behaviour of an oscillator.
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Chapter 3

Kuramoto model

Kuramoto developed his analysis as a much more extensive continuation to the
work of Winfree[10]. Intuitively, he realised that one could take the sensitivity
term from Winfree’s model into the sum and then express the model using a single
coupling function Γij. This coupling function then describes the coupling between
the ith and jth oscillator, such that[12] the model becomes

θ̇i = ωi +
N∑
j=1

Γij(θj − θi), i = 1, ..., N. (3.1)

Though, with the network topology being unspecified[9], the system of equations
in the form of equation (3.1) is still far too difficult to investigate. However,
intuitively, Kuramoto saw that the model could be understood by approximating
the oscillators to be coupled to some mean field oscillation of the collective system.
For his analysis, he then choose a purely sinusoidal coupling denoted by some
coupling parameter K. Bearing these considerations in mind, Kuramoto wrote
down his model where

Γij(θj − θi) = K

N
sin(θj − θi). (3.2)

The term N in equation (3.2) makes sure the system does not blow up as the
number of oscillators becomes very large.
Additional motivation for the use of a sinusoidal coupling includes the idea that the
coupling function would need to be odd if synchronisation is to occur. Effectively,
what Kuramoto wrote down is simply a version of the first term in a Fourier series
expansion of the Γij function.
The natural frequencies of the oscillators ωi would form some distribution that
is described by some probability density function g(ω). Kuramoto assumed this
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Kuramoto model

distribution to be unimodal1 and symmetric around some mean frequency Ω.
By analysing the system from a mean-field perspective, the probability function
becomes symmetric around zero (that is, g(−ω) = g(ω)). To make use of this
mean-field perspective, one would need to apply the translations

θi → θi − Ωt,
ωi → ωi − Ω.

3.1 The Order Parameter
To quantify the behaviour of the system in a more simplified way, the order
parameter was introduced. The order parameter describes the collective rhythm of
the model[13] and is given by

reiψ = 1
N

N∑
j=1

eiθj . (3.3)

If one would imagine drawing the phase of each oscillator on a complex unit circle,
then the order parameter can be thought of as some center of mass. The term
ψ then gives the mean-field phase and r gives a quantification for coherence. In
figure 3.1, three graphics are shown to illustrate the order parameter. The blue
points around the circle indicate the phase of the N oscillators, and the orange
cross indicates the order parameter itself.

Figure 3.1: Visual representations of the order parameter.

It can be noted that the length of the order parameter r is always bounded between

1Unimodal functions monotonically decrease for ω > 0. Formally: ∀v ≥ ω, g(v) ≤ g(ω) on
[0,∞).
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Kuramoto model

0 and 1. When the order parameter is found close to the origin (i.e. r ≈ 0), then
the phases of the oscillators are mostly distributed on the full interval [0,2π]. A
system where the order parameter approaches the origin is called incoherent. An
incoherent system is (mostly) unsynchronised.
In contrast, if the order parameter is found near the unit circle (i.e. r ≈ 1), then
this means that the phases of the oscillators are mostly grouped together at one end.
A system where the order parameter approaches the unit circle is called coherent.
A coherent system is (mostly) synchronised.
For any other value of 0 < r < 1, the system is said to be partially synchronised.
This can be the case when some, but not all, oscillators lock to the collective
rhythm. Further analysis on these types of solutions is done in section 4.1.

3.2 Further Simplification of the Kuramoto Model
Aside from being a handy tool to quantitatively examine a system of coupled
oscillators, the order parameter can also be used to simplify the Kuramoto model
given by the combination of equations (3.1) and (3.2). Taking the order parameter
from equation (3.3), and multiplying left and right by some factor e−iθi gives

rei(ψ−θi) = 1
N

N∑
j=1

ei(θj−θi).

Equating the imaginary parts then gives

r sin(ψ − θi) = 1
N

N∑
j=1

sin(θj − θi).

Finally, substituting this result into equations (3.1) and (3.2) gives a much nicer
version of the Kuramoto model:

θ̇i = ωi +Kr sin(ψ − θi), i = 1, ..., N. (3.4)

Using this form of the Kuramoto model, it is much simpler to recognise the
dependence on the mean-field quantities r and ψ. The coupling term Kr sin(ψ− θi)
tends to bring the ith phase closer to the mean-field phase ψ, whilst the effective
coupling strength is proportional to the coherence term r.
One last simplification to the Kuramoto model can be obtained by considering a
rotating frame. This would set ψ = 0 and results in a mean-field perspective:

r = 1
N

N∑
j=1

eiθj (3.5)

θ̇i = ωi −Kr sin θi, i = 1, ..., N. (3.6)
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Kuramoto model

3.3 Continuum Model
When considering a large number of oscillators, (i.e. N →∞), one could rephrase
the distribution of frequencies θ̇i in terms of some probability density function
ρ(θ, t, ω). Then, ρ(θ, t, ω)dθ gives the fraction of oscillators whose phase lies between
θ and θ + dθ at time t[9]. Two conditions are imposed on the distribution. Namely
that the distribution is normalised (

∫ 2π
0 ρ(θ, t, ω)dθ = 1), as well as it being periodic

(ρ(θ, t, ω) = ρ(θ + 2π, t, ω)). The continuous order parameter is then given by

reiψ =
π∫
−π

+∞∫
−∞

eiθ
′
ρ(θ′, t, ω)g(ω)dωdθ′ (3.7)

By applying the same methods used for the discrete order parameter in section 3.2,
it can be shown that

r sin(ψ − θ) =
π∫
−π

+∞∫
−∞

sin(θ′ − θ)ρ(θ′, t, ω)g(ω)dωdθ′.

Combining this with equation (3.4), one can rewrite the Kuramoto model in a
continuous form as

θ̇ = ω +K

π∫
−π

+∞∫
−∞

sin(θ′ − θ)ρ(θ′, t, ω)g(ω)dωdθ′. (3.8)

For the model to make sense, the time evolution of ρ(θ, t, ω), which can be thought
of as ’oscillator density’ at certain phases has to be continuous. That is, the rate
at which the oscillators leave a certain partition dθ of the unit circle in the order
parameter has to be equal to the flux at the boundaries:

∂ρ

∂t
+ ∂[ρθ̇]

∂θ
= 0. (3.9)

In physics, equation (3.9) resembles the conservation of linear momentum and mass.
It originates from the same underlying principles. Since θ̇ is already known through
equation (3.8), equation (3.9) can be rewritten as

∂ρ

∂t
= − ∂

∂θ

[
ρ

{
ω +K

π∫
−π

+∞∫
−∞

sin(θ′ − θ)ρ(θ′, t, ω)g(ω)dωdθ′
}]

(3.10)

This partial integro-differential equation describes the Kuramoto model in the limit
N −→∞. It is non-linear and cannot be solved directly, but will prove to be very
useful in the sections to follow. With this the governing equations for the Kuramoto
model have all been addressed and it is time to start analysing them.
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Chapter 4

Kuramoto Analysis

Numerical analysis on the connection between the coupling parameter K and
the coherence term r shows a rather curious behaviour. Figure 4.1 shows the
general trend of the relation between K and r1. As can be seen, there exists some
critical value of the coupling parameter Kc, which marks the boundary between
an incoherent and a (partially) coherent system. When K < Kc, the incoherent
states seem to be the most stables once whereas when K > Kc, the coherent
states become more and more stable. As K is increased beyond Kc more and more
oscillators will tend to lock to the collective rhythm.
One can understand this from the Kuramoto model in equation (3.4). It can be
noted that for synchronisation to occur, one would require a steady solution to
some oscillator. That is, θ̇ = 0. Imposing this condition to equation (3.6) and
noting that r and sine are bound between 1 and −1 gives:

|ωi| ≤ K, i = 1, ..., N. (4.1)

So, to have any hope of achieving some form of synchronisation, the minimum
requirement is that K must exceed some critical value for oscillator i.

4.1 Finite N Solution Terms
When the condition in equation (4.1) holds for some, but not all, oscillators in a
system, the long-term solutions can be described by two terms:

1The exact relation heavily depends on the distribution of the natural frequencies g(ω).
However, under the conditions imposed on g(ω) in section 3, the behaviour for (infinitely) many
oscillators will, in general, look approximately the same.
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Kuramoto Analysis

Figure 4.1: General plot of K against r.

• Locked oscillators (|ωi| ≤ Kr): these are the oscillators that approach a
stable limit-cycle as they do admit for the static solution θ̇i = 0. In this case,
it is possible to solve the Kuramoto model of equation (3.6) to get the phase
distribution of locked oscillators around the mean phase:

θi = arcsin
(
ωi
Kr

)
(4.2)

Their natural frequencies ωi are found near the center of the frequency distri-
bution g(ω).

• Drifting oscillators (|ωi| > Kr): these are the oscillators that run around
the unit circle non-uniformly. Although, at some occasions they seem to be
affected by the synchronised terms, they will never be able to fully lock to the
collective rhythm. This is because drifting terms do not allow for the solution
θ̇ = 0 and therefore possess no fixed points or attractors in θ. Their natural
frequencies are found towards the tails of the frequency distribution g(ω).

4.2 Continuum Solution Terms
In the continuum limit, stationary states require the density distribution ρ to be
independent of time, even when individual oscillators are still moving. Equation
(3.9) then requires that ρ is inversely proportional to the angular velocity θ̇ as to
keep their product constant. Combining this with equation (3.4) gives:

ρ(θ, ω) = C

|ω +Kr sin(ψ − θ)| (4.3)

where the constant C is found be

C = 1
2π
√
ω2 − (Kr)2

8



Kuramoto Analysis

using the normalisation condition proposed in section 3.3.
Through self-consistency of the order parameter under the statements above, one
can separately consider the locked and drifting oscillators. By denoting averages
using angular brackets:

reiψ = 〈eiθ〉 = 〈eiθ〉lock + 〈eiθ〉drift.

Considering the mean-field perspective (ψ → 0):

• Locked term: using equation (3.7), and by noting that ρ does no longer
explicitly depends on time:

〈eiθ〉lock =
π∫
−π

Kr∫
−Kr

eiθ
′
ρ(θ′, ω)g(ω)dωdθ′.

By realising that the imaginary (sine) part of the exponent is anti-symmetric
in the θ integral, and by including equation (4.2), the above can be recast into
the form:

〈eiθ〉lock =
Kr∫
−Kr

cos
(

arcsin
(
ω

Kr

))
g(ω)dω.

• Drifting term: the contribution of the drifting oscillators can be given
through equation (3.7):

〈eiθ〉drift =
π∫
−π

∫
|ω|>Kr

eiθ
′
ρ(θ′, ω)dωdθ′.

Through symmetry considerations in both g(ω) as well as ρ(θ, ω), this integral
vanishes.

In conclusion, the long term behaviour of the order parameter for infinitely many
oscillators depends only on the locked term. The continuous order parameter can
then be rewritten as:

r =
Kr∫
−Kr

cos
(

arcsin
(
ω

Kr

))
g(ω)dω,

= Kr

π/2∫
−π/2

cos2(θ)g(Kr sin θ)dθ. (4.4)
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Kuramoto Analysis

Equation (4.4) represents the self-consistency condition of the Kuramoto model.
There are two possible solutions: the trivial solution r = 0, which corresponds to
the incoherent state ρ(θ, ω) = 1

2π for all θ, ω; and a solution for r /= 0, in which
case equation (4.4) reads:

1 = K

π/2∫
−π/2

cos2(θ)g(Kr sin θ)dθ. (4.5)

By letting r → 0+, one can find the inferior limit of K, which is the critical coupling
value:

Kc = 2
πg(0) .

Expanding equation (4.5) in powers of r around r = 0 gives:

1 = K

π/2∫
−π/2

cos2(θ)
{
g(0) +Kc sin(θ)g′(0)r + 1

2K
2
c sin2(θ)g′′(0)r2 + ...

}
dθ

≈ Kg(0)
π/2∫
−π/2

cos2 θdθ + r2

2 KK
2
c g
′′(0)

π/2∫
−π/2

cos2 θ sin2 θdθ,

= Kg(0)π2 + r2

2 KK
2
c g
′′(0)π8 .

From this, it can be concluded that the amplitude of the bifurcation branch is
given by:

r ≈
√

16
πK3

c

−µ
g′′(0) , (4.6)

where

µ = K −Kc

Kc

.

10



Chapter 5

Stability and chaos

This section will discuss several subtopics that come with stability of the Kuramoto
oscillators. Firstly, stability in the continuum limit will be covered, where chaos
cannot exist [14],[15]. That includes stability in the r = 0 branch as well as stability
in the bifurcation in K ≥ Kc, as mentioned in section 3. Following that the finite
N Kuramoto model and its chaos conditions and will be discussed.

5.1 Stability in the N −−→∞ Limit
5.1.1 General Case
Both the r = 0 branch and the bifurcating branch of the continuum limit requires
the usage of equations (3.9) and (3.10), which govern the dynamics of the oscillator
density ρ(ω, θ, t) and therefore also the whole system. In order to look for stability,
one must now look at the fixed points and discuss them individually. To obtain
the fixed points, the steady state (∂ρ

∂t
= −∂[ρθ̇]

∂θ
= 0) solutions need to be found.

Evidently, this requires θ̇ρ(ω, θ) = C(ω) and C ∈ R. However, now there are two
cases that need to be considered, depending on whether the order parameter takes
a nonzero value or not.
The case r /= 0: The bifurcating branch

In the case that r /= 0, there are two different and distinct solutions:

• C(ω) = 0 =⇒ θ̇ρ(ω, θ) = 0 and since ρ /= 0 due to the normalisation
condition as in section 2.2, it must be true that θ̇ = ω − Kr sin(θ) = 0.
Inspired by the Kuramoto analysis it is checked for a solution the case with
all locked oscillators. As seen in previous sections, this equation gives the
attractor in θ for the locked oscillators with a frequency ω. This attractor
is namely θ0 = arcsin(ω/(Kr)). This hints at the fact that a delta function
solution of the form ρ(ω, θ) = ρ(θ) = δ(θ − θ0) needs to be checked. It turns
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Stability and chaos

out that this is indeed a solution and it really corresponds to the locked
fraction of the oscillators.

• C(ω) /= 0 =⇒ ρ(ω, θ) = C
θ̇

= C
ω+Kr sin(ψ−θ) = 1

2π

√
ω2−K2r2

|ω+Kr sin(ψ−θ)| is equivalent to
equation (4.3) when setting ψ = 0 without loss of generality, which represents
the distribution of the drifting population, which has no attractors in θ.
The function ρ(ω, θ) is almost uniform for large |ω|, but when the frequency
decreases, peaks start to appear at θ = π

2 and θ = −π
2 for positive and negative

ω respectively, meaning that oscillators spend significantly more time around
these phases.

Understanding why that is the case can give a lot of insight into the behaviour
of the Kuramoto model. The peaks are precisely at these values because those
values are the maximum phase at which an attractor can exist. In other words,
when |ω| gets lowered beyond some threshold, the oscillator becomes locked and it
is first locked at θ0 = ±π

2 . Further decreasing |ω| moves the attractor towards the
mean phase (ψ = 0).

Therefore, it is now clear that Kuramoto’s intuition for two separate populations
in the system is correct and why it makes sense. The drifting and the locked
oscillators each go to their asymptotic values to form a total order parameter r.
Near the bifurcation r behaves as is written in equation (4.6) if the distribution
g(ω) is supercritical (i.e. g′′(ω) < 0). Even though there is no analytic solution for
r(K) for the full branch, it is in general true that chaos does not exist for the case
of a pure Kuramoto model in the thermodynamical limit N −→∞ [14]. This result
is unanimously confirmed by numerical simulations [9]. It is, however, still desired
to have a more concrete proof that the two solutions above are stable.
The case r = 0: The incoherent state

If the order parameter is allowed to approach a zero value, then it can be easily
seen that the attractors for the locked oscillators start disappearing even for the
smallest of frequencies. Meanwhile, the drifting oscillators start being distributed
more and more uniformly around the unit circle. The state when r = 0, leading to
solution ρ = 1

2π , is called the incoherent state. It is definitely a fixed point of the
system, but its stability is still undetermined. Strogatz tackled this problem in the
following way [16]. The incoherent state is perturbed so that

ρ(ω, θ, t) = 1
2π + εη(ω, θ, t) with ε� 1,

η(ω, θ, t) = c(ω, t)eiθ + c̃(ω, t)e−iθ + η+.

The question to ask now is how does ρ(ω, θ, t) evolve in time and does it collapse
back to the incoherent state or does it develop into chaotic dynamics? More
specifically, does c(ω, t) diverge or converge? To answer that question, one can let
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Stability and chaos

c(ω, t) = b(ω)eλt and substitute that and the whole expression from the equation
above into the governing equation (3.10) in order to analyse for λ. Since the
incoherent state is a solution, the governing equation reduces to a dynamical
system in c and it looks like

dc

dt
= Âc = λc, where Âc = −iωc+ K

2

∫ ∞
−∞

c(t, ω′)g(ω′)dω′. (5.1)

Evidently, the operator Â is linear. After a few steps, it is found is that a solution
for λ is unique and real and with this condition, in must be true that

1 = K
2

∫ ∞
−∞

λ g(ω) dω
λ2 + ω2 . (5.2)

Since all expressions except for λ in equation 5.2 are positive, then λ must be
non-negative, which means that the perturbation either forces the incoherent state
into neutral stability, or chaos. It turns out that the condition that separates these
two outcomes is the coupling parameter K so that the incoherent state is linearly1

neutrally stable2 for K < Kc and as expected - unstable for K ≥ Kc. This result is
reconfirmed in more recent papers as well for the nonlinear [17] and general case
[18].

As for the bifurcating branch, so far it can only be shown that the order
parameter is stable in the neighbourhood of the critical point Kc. As for the whole
branch, stability in the general case is not yet proven, even though simulations hint
at it.

5.1.2 Lorentzian-like Distributions

So far we have discussed only the general case of an even and unimodal distribution
of natural frequencies g(ω). But what if we pick a more specific distribution like
the Lorentzian. Let g(ω) = (γ/π)

ω2+γ2 , centred at Ω = 0 as we are still in the rotating
frame. Therefore, Kc = 2

πg(0) = 2γ Kuramoto himself [19] gave this as an example

1Linear because the extra terms η+ of η(ω, θ, t) are ignored and thus Â is linear.
2Point x0 is neutrally stable in the dynamical system (φ : R× R −→ R; (t, x)→ φt(x))) if it is

Lyapunov stable (i.e. for any open neighbourhood U of x0, ∃ a smaller neighbourhood V of x0,
s.t. φt(V) ⊂ U ∀t ≥ 0) and is not attracting.
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Stability and chaos

and performed the calculation for r from equation (4.5):

1 =K
π

∫ π/2

π/2

γ cos2 θdθ

γ2 +K2r2 sin2 θ
,

= −γ +
√
K2r2 + γ2

Kr2 ,

=⇒ r = 0 or r =
√

1− 2γ
K

=
√

1− Kc

K
.

This is not the only approach that can be used to reach this result. In fact, a
different approach will be discussed now without too much detail, which allows for
a more general conclusion and what is found above for the Lorentzian will serve as
a reality check. The approach is done by Ott and Antonsen and its main result
is that for a general distribution g(ω) = A

ω2m+B2 , A,B ∈ R+ the Kuramoto model
reduces to m coupled differential equations [20].In short, the way in which this
result is obtained is by expanding ρ in Fourier series of θ such that

ρ(ω, θ, t) = 1
2π

∞∑
n=−∞

fn(ω, t)einθ,

= 1
2π

(
1 +

∞∑
n=1

fn(ω, t)einθ + f̃n(ω, t)e−inθ
)

(5.3)

and looking for the specific family of solutions fn(ω, t) = (α(ω, t))n with |α| ≤ 1.3
Since equations (3.7) and (3.10) must be satisfied, this leads to

∂α(ω, t)
∂t

= K

2


[∫ ∞
−∞

α(ω, t)g(ω)dω
]

︸ ︷︷ ︸
r∗

−rα2

− iωα(ω, t).

Meanwhile, the Fourier series from equation 5.3 reduce to geometric series and allow
for a concrete expression for ρ(ω, θ, t). Now, to obtain the equation for the order
parameter, we must integrate r =

∫ π
−π dθ

∫∞
−∞ dωρg (equation (3.7)), but before

doing so, we need to find the expression for r∗. That integral is computed by
making use of a semi-circle contour in the complex plane, which would enclose
exactly half of the poles of g(ω). Using Cauchy’s residue theorem and a useful
lemma4, there can be found m solutions for α(ω, t). This condition transforms into
m coupled differential equations for r.

3One motivation to consider these solutions is the fact that both the incoherent state (α = 0)
and the partially synchronised states conform to that expression. Therefore, this family of
distributions can be interpreted as a continuous connection between the two extrema.

4When the integrand is of the form I = P1
P2

(polynomials), then the integral vanishes along the
open semi-circle contour in the limit that the radius goes to infinity if deg(P1)+2 ≤ deg(P2)
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Stability and chaos

In the simplest case where g(ω) = (1/π)
ω2+1 , this method results in the equation

ṙ = (K2 − 1)r − K
2 r

3 and its stationary state corresponds to the result obtained
above. For K > Kc his equation has two fixed points r1 = 0 and r2 =

√
1− 2γ

K
,

only the second one of which is an attractor. Therefore the omega and alpha limit
sets are ω† = (r2) and α† = (r1). For K ≤ Kc the fixed point is only one (r1 = 0)
and it is attracting, thus having only an omega limit set of ω† = (r1) and an empty
alpha set α† = ∅.

5.2 Stability for N <∞

5.2.1 Identical Oscillators
The case of identical oscillators is the simplest possible first look at the problem
of stability in a finite-dimensional Kuramoto model. In a rotating frame with the
frequency of the oscillators, the problem is simply formulated like

θ̇i = K

N

N∑
j=1

sin(θj − θi) = −Kr sin θ (5.4)

where the last step is only valid if the mean phase ψ is set to zero again. This
system possesses two fixed points if r /= 0 - at θ = 0 and θ = ±π (same point). Only
the first of these is attracting and is asymptotically stable. The existence of such a
global attractor forbids chaos in the system. The equivalent of the incoherent state
(e.g. θν = 2π

N
(ν − 1)) here can also be seen to be non-chaotic and an equilibrium

point.
Alternatively, one can reduce the system of N equations 5.4 into a (N − 1)-

dimensional dynamical system by the method of averaging5. It can be shown that
this system has at least N − 2 constants of motion [21]. Therefore, the dynamical
system from equation 5.4 reduces to a one-dimensional dynamical system. As is
known, planar chaos cannot exist and even less so one-dimensional chaos. Therefore,
chaos cannot exist in the case of identical oscillators.

5.2.2 Non-identical Oscillators

In the cases N = 2,3,4

5Consider N − 1 equations for phase differences and one for the mean phase, which does not
couple back to the phase differences.
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Stability and chaos

In the simplest case when N = 2, the system is not chaotic. As explained above,
the method of averaging can be used to reduce the system to one equation, such
that

φ̇ = ∆−K sinφ where φ = θ2 − θ1 and ∆ = ω2 − ω1. (5.5)

Once again, chaos does not exist in one dimension and this system is very well
behaved. What’s more, the system still synchronises to a locked state if φ̇ < 0.
The condition for this is that equation 5.5 has two fixed points and therefore
the condition is K > Kc = ∆. In the case K < Kc, the two oscillators oscillate
normally, but with altered frequencies ω̄, given by [22]:

ω̄1,2 = ω1 + ω2

2 ± π
(∫ 2π

0

dφ

∆−K sinφ

)−1

. (5.6)

The case of N = 3 is the first one that makes the dynamics a bit less predictable.
Since the system can still be reduced to two dimensions, it should not exhibit chaos
either. There still exists a coupling constant Kc past which oscillations become
locked at a common frequency [22]. It is possible that under uneven distribution
of frequencies, an additional coupling constant Kcl appears past which two of the
oscillators synchronise. In general, the system has six fixed points - one stable, two
unstable and three saddles which start disappearing when K is reduced past the
bifurcation point(s) [22],[23].

If one more oscillator is added to the picture so that N = 4, this is the first time
that true chaos appears. As can be seen, the argument for absence of chaos due to
low dimension of the system no longer holds. Furthermore, it can be proven that a
chaotic attractor emerges in this case [22]. There is again a point Kc above which
the system is synchronised. However, this time reducing K through Kc results in
chaos and not quasi-periodic dynamics.
In the general case for larger N

It becomes fairly hard to analyse equations as N increases past 10. Nevertheless,
in all cases of finite N , the point Kc always exists (increasing at first with N , but
decreasing and converging to a positive value later) and past it there is always
an asymptotically stable value for r with a certain upper bound, also increasing
with N [24]. Chaotic behaviour increases with N , but that is only up to a certain
point. As can be intuitively explained, large N slowly approaches the system with
infinite N , which as already shown is non-chaotic [14]. For very large, but finite N ,
it can be shown that there exists a threshold value for the width of the frequency
distribution, below which stable phase-locked solutions exist [25].
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Chapter 6

Conclusion

The Kuramoto model, firstly introduced in 1975 by Yoshiki Kuramoto during a
symposium, has come to represent the baseline of what is nowadays an entire
sub-field of mathematics, dealing with synchronisation of oscillators. As seen
previously, this model finds applications in many fields outside mathematics. The
simplest possible case is the unperturbed infinite-oscillator model, which allows
for some simplified calculations. However, most of the progress that could be
done there was done by the mid-90s. That is - the existence of two groups of
partially synchronised oscillators past a certain threshold coupling strength and
the stability of the incoherent state and the partially synchronised around the
bifurcation. Additionally, computer simulations have also been quite handy through
the years of researching the Kuramoto model and predicting its behaviours under
various conditions. But still, since the 90s there haven’t been huge developments
in the ’classic’ Kuramoto model and the problem concerning global stability was
left hanging. Hence, other researchers in the field turned to discussing finite-
oscillator models and their size dependence. Furthermore, many ventured into
driven oscillators under the Kuramoto model, different distinct groups of oscillators
composing the system, etc.
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Appendix A

Numerical integration with
C++

1 // Kuramoto model ( Synchron izat ion o f N o s c i l l a t o r s )
2 // headers from Numerical Rec ipes (3 rd ed i t i o n )
3 #inc lude <iostream>
4 #inc lude <iomanip>
5 #inc lude <cmath>
6 #inc lude <random>
7 #inc lude <complex>
8 #inc lude " nr3 . h "
9 #inc lude " s t epper . h "

10 #inc lude " stepperdopr5 . h " // f i f t h −order Dormand−Prince method
11 #inc lude " ode int . h "
12

13

14 us ing namespace std ;
15

16 const i n t n = 4 ; // number o f o s c i l l a t o r s
17 double omega_array [ n ] ; // omega ’ s array
18 i n t time_int = 1200 ; // i n t e g r a t i o n time
19 double K = 0 . 2 ; // coup l ing parameter
20 i n t counts = 0 ;
21

22 // s e t o f n d i f f e r e n t i a l equat ions
23 s t r u c t d e r i v a t e s {
24 de r i v a t e s ( ) {} ;
25 void operator ( ) ( const double& t , const VecDoub &yvector , VecDoub

&dydx ) {
26 i n t i = 0 ;
27 i n t k = 0 ;
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Numerical integration with C++

28 counts++;

29 f o r ( i = 0 ; i < n ; i++){
30 dydx [ i ] = omega_array [ i ] ;
31 f o r ( k = 0 ; k < n ; k++){
32 dydx [ i ] += K/n ∗ s i n ( yvector [ k ] − yvector [ i ] ) ;
33 }
34 } // 2 f o r l oops in order to r e a l i z e Kuramoto model
35 }
36 } ;
37 Doub zero_2_PI (Doub x ) { // phases between 0 and 2 p i
38 whi le ( x <= 0) {
39 x += 2.0∗M_PI;
40 }
41 whi le ( x > 2∗M_PI) {
42 x −= 2.0∗M_PI;
43 } return x ;
44 }
45

46 i n t main ( ) {
47 const i n t N = n ;
48 Doub x1 = 0 . 0 , x2 = 0 . 0 , dx = 0 . 0 0 3 ; // i n t e g r a t i o n boundaries

, s t e p s i z e
49 Doub a t o l = 1e−12, r t o l = 1e−12, stepmin = 1e−18; // abs e r e l

t o l e r anc e s , min s t e p s i z e
50 Doub x1max = time_int ∗ dx ; // s t e p s i z e ∗ i n t e g r a t i o n time
51 VecDoub y s t a r t (N) ; // i n i t i a l s t a t e s array
52 i n t i = 0 ;
53 ofstream omega ( " omega . csv " ) ; // wr i t e omegas on omega . csv
54 ofstream phase ( " phases . csv " ) ; // wr i t e phases on phases . csv
55 std : : default_random_engine gen ; // random normal d i s t r i b u t i o n

o f f r e qu en c i e s
56 std : : normal_distr ibut ion<double> norm ( 2 . 5 , 1 . 0 ) ;
57 f o r ( i =0; i<n ; i++){
58 omega_array [ i ]=norm( gen ) ;
59 omega << omega_array [ i ] <<" "<<endl ;
60 }
61 std : : default_random_engine gen2 ; // uniform

d i s t r i b u t i o n o f phases between 0 and 2 pi
62 std : : un i fo rm_rea l_di s t r ibut ion<double> un i f (0 ,2∗M_PI) ;
63 f o r ( i =0; i<n ; i++){
64 y s t a r t [ i ]= un i f ( gen2 ) ;
65 phase<< ys t a r t [ i ] <<" "<<endl ;
66 }
67 omega . c l o s e ( ) ;
68 phase . c l o s e ( ) ;
69 counts = 0 ;
70 ofstream t r a j e c t o r y ( " t r a j e c t o r y . csv " ) ;
71 ofstream order_1 ( " order . csv " ) ;
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Numerical integration with C++

72 ofstream order_2 ( " Rorder . csv " ) ;
73 f o r ( x1 = 0 ; x1 < x1max ; x1 += dx) {
74 x2 = x1 + dx ; // i n t . boundar ies are x1 and x1+dx=x2
75 cout << " time : " << x1 << " " << x2 << endl ;
76 de r i v a t e s d ;
77 Output out (10) ; // Output i s an ob j e c t that takes

in t e rmed ia t e va lue s
78 Odeint <StepperDopr5<der iva t e s> > ode ( ys tar t , x1 , x2 , a t o l ,

r t o l , dx , stepmin , out , d ) ;
79 ode . i n t e g r a t e ( ) ; // i n t e g r a t i o n o f d i f f e r e n t i a l eqs .
80 f o r ( i = 0 ; i < n ; i++){
81 y s t a r t [ i ] = zero_2_PI ( y s t a r t [ i ] ) ; // phases between 0

and 2 pi
82 }
83 t r a j e c t o r y << x1 ; // lower bound pr in ted on t r a j e c t o r y . csv
84 complex<double> im = −1;
85 im = sq r t ( im) ; // imaginary un i t
86 f o r ( i = 0 ; i < n ; i++){
87 t r a j e c t o r y << " , " << ys t a r t [ i ] ; // new phases pr in ted

on t r a j e c t o r y
88 }
89 t r a j e c t o r y << endl ;
90 complex<double> order = exp ( im ∗ y s t a r t [ 0 ] ) ; // order

parameter
91 f o r ( i = 1 ; i < n ; i++){
92 order += exp ( im ∗ y s t a r t [ i ] ) ;
93 }
94 double r e a l o r d e r = r e a l ( order ) / n ; // r e a l part
95 double imagorder = imag ( order ) / n ; // imaginary part
96 double order1 = sq r t ( r e a l o r d e r ∗ r e a l o r d e r + imagorder ∗

imagorder ) ; // module
97 order_1 << x1 << " , "<< r e a l o r d e r << " , "<< imagorder <<endl ;
98 order_2 << x1 <<" , "<< order1 << endl ;
99 }

100 t r a j e c t o r y . c l o s e ( ) ;
101 order_1 . c l o s e ( ) ;
102 order_2 . c l o s e ( ) ;
103 re turn 0 ;
104 }
105 }

20



Appendix B

Animation with Python

1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import math
4 from matp lo t l i b import animation
5 p l t . s t y l e . use ( ’ seaborn−pa s t e l ’ )
6

7 #==============
8 #=====DATA=====
9 #==============

10 k=0.2 #coup l ing parameter
11 n=4 #number o f o s c i l l a t o r s
12 time_int=1200
13 dt=0.003
14

15

16 data = np . genfromtxt ( ’ t r a j e c t o r y . csv ’ , d e l im i t e r = ’ , ’ ) #data from
t r a j e c t o r y . csv

17 o s c i l l=np . array ( [ np . array ( [ np . array ( [ 0 . , 1 . , 0 . ] ) f o r osc in
range (n) ] ) f o r time in range ( time_int ) ] )

18 f o r t in range ( time_int ) :
19 f o r osc in range (n) :
20 o s c i l l [ t ] [ osc ] [ 0 ]= data [ t ] [ osc+1] #theta
21 o s c i l l [ t ] [ osc ] [ 1 ]=math . cos ( data [ t ] [ osc +1]) #cos theta
22 o s c i l l [ t ] [ osc ] [ 2 ]=math . s i n ( data [ t ] [ osc +1]) #s i n theta
23 #my array has [ theta , cos ( theta ) , s i n ( theta ) ] f o r each o s c i l l a t o r and

f o r each i n s t an t (1200 rows , n columns )
24

25

26 data_order = np . genfromtxt ( ’ order . csv ’ , d e l im i t e r= ’ , ’ ) #data
from order . csv e Rorder . csv

27 data_r_order = np . genfromtxt ( ’ Rorder . csv ’ , d e l im i t e r= ’ , ’ )
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Animation with Python

28 order=np . array ( [ np . array ( [ 0 . , 1 . , 0 . ] ) f o r time in range ( time_int ) ] )
29 f o r x in range ( time_int ) :
30 order [ x ] [ 0 ] = data_r_order [ x ] [ 1 ] #modulo
31 order [ x ] [ 1 ] = data_order [ x ] [ 1 ] #parte r e a l e
32 order [ x ] [ 2 ] = data_order [ x ] [ 2 ] #parte immaginaria
33 #my array has [ r module , Re( r ) , Im( r ) ] f o r each i n s t an t ( r order

parameter )
34

35

36 #=========
37 #=FIGURE==
38 #=========
39 f i g = p l t . f i g u r e ( )
40 ax = f i g . add_subplot ( autoscale_on=True , xlim=(−1.5 , 1 . 5 ) , yl im=(−1.5 ,

1 . 5 ) )
41 f i g . s u p t i t l e ( ’K=’+s t r ( k )+’ , N=’+s t r (n) )
42 ax . set_aspect ( ’ equal ’ )
43 ax . g r id ( )
44 ax . s e t_x labe l ( ’Re ’ )
45 ax . s e t_y labe l ( ’ Im ’ )
46 c i r=p l t . C i r c l e ( (0 ,0 ) ,1 , f i l l =Fal se ) #complex un i t c i r c l e
47 ax . add_art i s t ( c i r )
48 osc , =ax . p l o t ( [ ] , [ ] , ’ o ’ )
49 time_template = ’ time = %.1 f s ’
50 time_text = ax . t ex t ( 0 . 0 5 , 0 . 9 , ’ ’ , t rans form=ax . transAxes ) #module

o f r i n s t ead o f time
51

52

53 #=========
54 #=ARROW===
55 #=========
56 Q=ax . qu iver ( 0 , 0 , 0 , 0 , un i t s=’ xy ’ , s c a l e =1) #arrow with coo rd ina t e s Re( r

) and Im( r )
57

58 #=========
59 #=INIT====
60 #=========
61 # i n i t i a l i z a t i o n func t i on
62 de f i n i t ( ) :
63 osc . set_data ( [ ] , [ ] )
64 time_text . set_text ( ’ ’ )
65 re turn osc , time_text
66

67

68 #============
69 # = Animate =
70 #============
71 de f animate ( i ) :
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Animation with Python

72 osc . set_data ( [ o s c i l l [ i ] [ osc ] [ 1 ] f o r osc in range (n) ] , [ o s c i l l [ i ] [
osc ] [ 2 ] f o r osc in range (n) ] )

73 Q. set_UVC ( [ order [ i ] [ 1 ] ] , [ o rder [ i ] [ 2 ] ] )
74 time_text . set_text ( ’ r = ’ + s t r ( order [ i ] [ 0 ] ) )
75 re turn osc , Q, time_text
76

77 anim=animation . FuncAnimation ( f i g , animate , frames=r ighe , i n t e r v a l =8,
b l i t=False )

78

79 p l t . show ( )
80 anim . save ( ’Kuramoto (k=’+s t r ( k )+’ ,n=’+s t r (n)+’ ) .mp4 ’ , f p s =30)
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